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1.  Introduction

Soils and sediments are archaeological materials, 
archaeological resources that contain an archive of past 
events and cultural behaviours. For nearly one hundred 
years, archaeologists and soil scientists have accessed parts 
of this archive through applications in archaeological soil 
chemistry. Central Europe has been home to several key 
developments in archaeological soil chemistry, from the 
earliest applications of soil phosphate analysis to recent 
practical application of portable X-ray Fluorescence 
spectroscopy. Established methods, including phosphate 
analyses and multi-element ICP-MS/OES, have provided 
interpretations of the use of space within settlements and 
houses, and the function of specific archaeological features. 
As archaeology continues to evolve as a discipline, micro-
remains are becoming increasingly important sources of 
data about past human mobility, diversity, production, 
consumption, and human ecodynamics. These data come 
from a range of sources, including both human and animal 

remains, primarily bones and teeth (proteomics, Charlton 
et al., 2019; strontium isotopes, Giblin et al., 2013), and 
portable artefacts (e.g. starch grains on grinding stones and 
ceramics, Duke et al., 2018; ceramic residue analysis Dunne, 
et al., 2019; residues on lithics, Rots et al., 2015).

Chemistry of soils and sediments have been recognized, 
and utilized, for a longer time. In addition to soil phosphate 
analysis, soil chemical methods for archaeology traditionally 
include multi-element chemistry, soil pH, magnetic 
susceptibility, and soil organic carbon and nitrogen. Recently, 
research in the Central European Palaeolithic have combined 
these, for example, assessing carbon, nitrogen, and magnetic 
susceptibility at the Pod Hradem cave to aid in interpreting 
soil formation and potential climatic changes (Nejman 
et al. 2018; 2020). Nevertheless, full exploitation of the soil 
archive remains sporadic.

Cultural soilscapes (Salisbury, 2016; Wells, 2006) 
hold ancient human and environmental DNA (Slon et al., 
2017; Willerslev et al., 2003), biomarkers (Kovaleva and 
Kovalev, 2015; Zocatelli et al., 2017), traces of pollution 
(Martínez Cortizas et al., 2016; Veron et al., 2014), evidence 
of ecological changes and the environmental impact of 

Volume XI     ●     Issue 2/2020     ●     Pages 199–211

*Corresponding author. E-mail: roderick.salisbury@univie.ac.at

A R T I C L E  I N F O

Article history:
Received: 9th September 2020
Accepted: 27th November 2020

DOI: http://dx.doi.org/10.24916/iansa.2020.2.5

Key words:
archaeological soil chemistry
archaeological prospection
settlement patterns
activity areas
Central Europe

A B S T R A C T

Analytical technologies for the evaluation of archaeological soils have developed rapidly in recent 
decades, and now support a range of innovative research and interpretations of archaeological sites 
and landscapes. Established methods, including phosphates and multi-element ICP-MS/OES, have 
provided interpretations of the use of space within settlements and houses, and the function of specific 
archaeological features. Recently, portable X-Ray Fluorescence has been introduced to archaeological 
soil science, but published results have generated knowledge gaps. The correspondence between 
archaeological geochemical anomalies and specific human activities is partly dependent on geology 
(including sediment type and relative acidity and permeability of the soil), topography, and formation 
processes, as well as influence of human activities. At the same time, which elements, and fractions 
of elements, are measured is largely dependent on instrument parameters and extraction methods. 
This paper provides an overview of archaeological soil chemistry in Central Europe, and the current 
state-of-the-art, followed by an assessment of future developments in archaeological soil chemistry, 
molecular biogeochemistry, and the significance of geoarchaeology in multi-disciplinary research.
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cultural behaviour (Schumacher et al., 2016; Sprafke, 2016), 
archaeological site formation processes (Nicoll and Murphy, 
2014), raw material provenance for components of ceramic 
matrices (Riebe and Niziolek, 2015), and the contamination 
of cultural heritage and artefacts by modern pollution (Nord 
et al., 2005). Continued development of archaeological 
biogeochemistry is beginning to recognize the archaeological 
potential of proteomics, genomics, and other biomarkers in 
the soil archive.

Several reviews of archaeological sol chemistry have been 
published (Oonk et al., 2009a; Wilson et al., 2008); of especial 
import was the detailed summary of soil phosphate methods 
in archaeology by Holliday and Gartner (2007). A vast body 
of literature exists for archaeological soil chemistry (Table 1). 
This review of the history and development of archaeological 
soil chemistry focuses on examples from Central Europe, 
and the current state-of-the-art, followed by an assessment 
of future developments in molecular biogeochemistry and 
the significance of geoarchaeology in multi-disciplinary 
research. Currently, trends are changing from the traditional 
roles of archaeological soil chemistry – site prospection 
and delimiting habitation areas – into a complex, multi-
disciplinary endeavour integrating various strands of 

Table 1. Selected references for archaeological soil chemistry, with focus on Central Europe (arranged chronologically).

Type of study References

Soil chemistry & soil science Feigl, 1960; Bowen, 1979; Füleky, 1983; Kabata-Pendias and Pendias, 1984; Sposito, 1998; 
Sparks 1996; 2003; Holliday 2004.

Early archaeological investigations Arrhenius, 1929; 1931; Lorch, 1930; 1940; 1941; 1951; Schnell, 1932; Christensen, 1935; Bandi, 
1945; Stoye, 1950; Lutz, 1951; Dauncy, 1952; Pelikán, 1954; Dietz, 1957.

Methdological reviews and histories Sjoberg, 1976; Eidt, 1977; Keeley, 1981; Bethell and Máté, 1989; Zölitz and Heinrich, 1990; 
Walker, 1992; Kondratiuk and Banaszuk, 1993; Bjelajac et al., 1996; Aston et al., 1998; Klamm 
et al., 1998; Leonardi et al., 1999; Haslam and Tibbett, 2004; Wells 2004a; Holliday and Gartner, 
2007;  Wilson et al., 2008; Oonk et al., 2009a; Pastor et al., 2016.

Applications in Central Europe 

Phosphate Gundlach, 1961; Schwarz, 1967; Grimm, 1971; Sjöberg, 1976; Kiefmann, 1979; Zölitz, 1980; 
1982; 1983; 1986; Gebhardt, 1982; Majer, 1984; Zimmermann, 1995; 2001; 2008; Stäuble and 
Lüning, 1999; Majer, 2004; Sarris et al., 2004; Ernée, 2005; Ernée and Majer, 2009; Hlavica 
et al., 2011; Schreg and Behrendt, 2011; Petřík et al., 2012; Salisbury, 2012; Lauer et al., 2013; 
Salisbury et al., 2013; Weihrauch et al., 2017; Weihrauch and Söder, 2020; Weihrauch et al., 2020.

Multi-element Hejcman et al., 2011; 2013a; 2013b; Gauss et al., 2013; Salisbury, 2013; Pető et al., 2015; Lubos 
et al., 2016; Salisbury, 2016; Dreibrodt et al., 2017; Smejda et al., 2017; 2018; Horák et al., 2018; 
Janovský and Horák, 2018; Pankowská et al., 2018; Pető et al., 2019; Dreslerová et al., 2020.

Future directions

Lipid biomarkers Bull et al., 2000; Bull et al., 2002; Schwark et al., 2002; Killops and Killops, 2005; Zech et al., 
2010; Schatz et al., 2011; Sistiaga et al., 2014; Prost et al., 2017; Zocatelli et al., 2017; Harrault 
et al., 2019; Schirrmacher et al., 2019; Patalano et al., 2020; Portillo et al., 2020.

Isotopes Bogaard et al., 2007; D’Anjou et al., 2012; Abell et al., 2019; Bataille et al., 2020; Snoeck et al., 
2020.

Sediment aDNA Hebsgaard et al., 2009; Giguet-Covex et al., 2014; Madeja, 2015; Thomsen and Willerslev, 2015; 
Parducci et al., 2017; Slon et al., 2017; Brunson and Reich, 2019; Epp et al., 2019;  Nejman et al., 
2020.

Proteomics Oonk et al., 2012.

geoarchaeology, bioarchaeology, and environmental studies. 
This trajectory needs geoarchaeologists to contribute to 
diachronic and synchronic examinations of archaeological 
landscapes and human-ecodynamics.

2.  Archaeological soil phosphates in Central Europe

The history of archaeological soil chemistry extends over 
a century (Arrhenius, 1931) and across the globe, from 
Alaska (Knudson et al., 2004) to the Levant (Šmejda 
et al., 2018) and to Australia (Fanning et al., 2018). The 
link between ancient human occupation and increased soil 
phosphate content were first noted in late 19th or early 20th 
century agricultural soil surveys (Russell, 1915). Publication 
of methods and results began when Swedish agronomist 
Olaf Arrhenius recognized and recorded the relationship 
between surface finds, human occupation, and soil phosphate 
levels while conducting agricultural soil testing, and posited 
a causal correlation between enhanced soil phosphates and 
human settlements (Arrhenius, 1929; 1931). The method was 
applied to Swedish habitation sites by Schnell (1932), who 
sampled along transects radiating outward from an assumed 
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central point in a given site and constructed isopleth maps of 
the phosphate values to delimit site boundaries. Following 
this, archaeologists in Central Europe and elsewhere have 
conducted soil phosphate analyses for archaeological survey 
and site interpretations for nearly a century, with continuing 
methodological developments.

Early archaeological soil chemistry focused primarily on 
phosphates for four reasons: First, it was the first element 
explicitly connected to prehistoric human habitation, 
and subsequent studies exploited this discovery. Second, 
it is essential to life and therefore can be found in and 
deposited by anything organic, as primary, secondary, 
or in situ refuse. Inputs include food preparation wastes 
such as bone, meat, fish, and plants, wood ash, human or 
animal burials, and urine and faeces of humans and animals. 
Therefore, human habitation areas will have higher levels 
of soil P than surrounding areas with no habitation. Conway 
(1983) demonstrated that human occupation could result in 
annual increases in concentrations of P from 1–10%. Third, 
phosphates tend to accumulate quickly, have low solubility 
and a strong ability to fix within the soil profile. In favourable 
soil conditions, P remains stable and is likely to be retained, 
even in disturbed soils, for millennia without appreciable 
leaching. Fourth, in its most basic form, phosphate testing 
is fast and inexpensive compared with almost every other 
analytical technique, and can be conducted in the field during 
survey or excavation.

2.1   The first 60 years of archaeological soil phosphate 
analysis

Arrhenius’s methods were quickly applied to prehistoric and 
medieval sites in Central Europe by German geographer 
Walter Lorch (1940; 1941; 1951). Lorch sampled along 
regular transects across and around ancient settlements, 
used a laboratory colorimetric method to measure phosphate 
content, and graphed the results. By comparing graphs 
of density and distribution, and interpreting the different 
profiles, Lorch persuasively argued that variability in 
phosphate was due to different subsistence economies in 
the Palaeolithic, Neolithic, and metal ages. Other research 
projects soon followed. Bandi (1945) used Lorch’s method 
to locate a medieval site in Switzerland. Dietz (1957) used 
a method of sulphuric acid in test tubes visually compared 
to standards to examine a small plot of land with surface 
material indicating prehistoric activity, looking for evidence 
of organic waste deposits.

The next major advance in archaeological soil phosphate 
studies came with the development of a spot-test, or ring-
chromatography test, by Friedrich “Fritz” Feigl in Vienna. 
In his comprehensive two-volume compendium on chemical 
spot-tests, Feigl (1960) recommended the highly toxic 
and corrosive nitric acid (HNO3) to prepare an ammonium 
molybdate solution, and the toxic and flammable benzidine 
as a reducing agent to measure inorganic phosphate from 
geological samples. Gundlach (1961) modified Feigl’s 
method to increase the speed and safety when testing soil from 
boreholes at prehistoric sites. Gundlach retained the nitric 

acid for digestion, but switched to the organic and relatively 
harmless ascorbic acid (C6H8O6) for reduction, making it 
more stable and eliminating the need for flame and ammonia 
in field conditions. In any acid-molybdate method, PO4 reacts 
with molybdate to form phosphomolybdic acid (yellowish 
in colour); in Gundlach’s method, phosphomolybdic acid is 
reduced by ascorbic acid to form a blue complex. Gundlach 
conducted his tests in the field, with the filter paper and drop 
bottles attached to a pole stuck in the ground next to his 
borehole (depicted in Gundlach, 1961 p.736, Figure 1), and 
noted that the entire process takes approximately 90 seconds. 
Gundlach ranked the results on a scale of 1–5, from none to 
very high levels of P.

Schwarz (1967) used the Gundlach method and established 
a field methodology for sample collection, collecting samples 
in plastic bags, collecting enough soil to run multiple tests 
and to determine colour and grain size, and collecting 
samples by layer. Schwarz conducted large-scale surveys 
near the San Bernardino Pass in southern Switzerland, taking 
samples at 30– 50 m intervals. Two suggestions regarding 
research methodology are of note from the Schwarz’s paper. 
First, he observed that some information about land-use, 
previous archaeological investigations, and geomorphology 
are essential to planning a chemical survey campaign. 
Second, he suggested that phosphate surveys would be 
more useful when complemented by geophysical surveys 
or test trenching, and warned that carrion pits, where local 
villagers dispose of diseased animals, should not be mistaken 
for prehistoric habitations (Schwarz, 1967, pp.58–61). 
Schwarz’s sampling approach has been criticized (Sjöberg, 
1976, p.449) because of his suggestion that samples be taken 
along natural lines, such as field boundaries, rather than on 
a regular grid or transect system.

Kiefmann (1979) conducted large-scale phosphate mapping 
in East Holstein and arrived at two significant conclusions. 
First, soil phosphate content is influenced by both changing 
land-use and pedogenesis. That is, archaeological soil 
chemistry requires some understanding of both cultural and 
non-cultural formation processes, including soil formation. 
Second, Kiefmann found that different extraction methods 
yielded different P concentrations and distributions.

Zölitz (1980) pioneered the use of variogram modelling 
as a statistical method for analysing soil phosphate results. 
Majer (1984) developed a 3-point relative scale for measuring 
results, and noted that archaeologists were most interested 
in the anthropogenic enhancement of soil phosphate, rather 
than the total quantity of P. Phosphate surveys successfully 
identified residential areas in both prehistoric and medieval 
sites (Grimm, 1971; Zölitz, 1982; 1983; 1986).

Eidt refined Gundlach’s method further, first by replacing 
nitric acid with hydrochloric acid (HCl) (Eidt, 1973) and 
then by developing a bath to stop the chemical reaction, 
so that results could be archived (Eidt, 1977). Eidt found 
that HCl is superior to both nitric acid and sulphuric acid 
when extracting P in laboratory tests, and observed that the 
use of HCl for both field and lab analyses would improve 
comparability of results. He also noted that the question of 
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which acid was superior in most cases had been raised by 
both Feigl (1960) and Murphy and Riley (1962), and the 
answer was probably that both nitric and sulphuric acids are 
oxidizers, whilst producing a blue colour from phosphate 
and molybdenum requires a reducing process (Eidt, 1973, 
p.207).

By the 1990s, spot-test methods were standardized, a few 
specific extraction formulas for colorimetry had been widely 
adopted, and several critiques and reviews were being 
published (Bethell and Máté, 1989; Bjelajac et al., 1996; 
Klamm et al., 1998; Kondratiuk and Banaszuk, 1993; Zölitz 
and Heinrich, 1990). In Germany and in the Czech Republic, 
soil phosphate analyses were frequently used (Majer, 2004; 
Stäuble and Lüning, 1999; Zimmermann, 1995), but were 
rarely used elsewhere in Central Europe.

2.2   Recent developments of soil phosphate analysis in 
Central Europe

Despite acknowledgement of the contribution of 
soil phosphate mapping for settlement archaeology 
(Zimmermann, 2001), the increasing sophistication of 
aerial remote sensing and geophysical prospection led to 
wide-scale adoption of alternative survey methods at both 
the site and regional scale, and a concomitant decrease 
in soil chemistry survey. In part, this can be explained by 
recognizing that phosphate spot testing, the method fastest 

and requiring the least training and financing, is also the 
least informative method; Zimmerman (2001) called it 
inappropriate. As a survey method, inappropriate is perhaps 
unfair for a tool that identifies areas of possible human 
settlement activity while enabling students to participate 
in sample collection and analysis during field projects. 
Archaeological soil phosphate has been the largest and most 
common application of geochemistry in archaeology, with 
examples at the regional and micro-regional scales (Nuñez 
and Vinberg, 1990; Salisbury, 2012; Thurston, 2001; Zölitz, 
1982). Challenges remain, however, including fertilization 
(Weihrauch et al., 2017) and heterogeneous environments 
(Weihrauch and Söder, 2020).

Although an essential component of site prospection and 
settlement archaeology, soil phosphate analysis is largely 
restricted to identifying activity or habitation areas where 
large quantities of organic matter were deposited, such as 
detecting boundaries of settlements, household clusters, 
and activity zones (Salisbury, 2016; Sarris et al., 2004; 
Zimmermann, 2008). Pav (available P) was used to delineate 
site boundaries at a series of Late Neolithic and Early Copper 
Age settlements in the Körös Region of eastern Hungary 
(Figure 2; Salisbury, 2012; 2016).

P analysis was applied at the excavation of an early 
medieval house at Schalkstetten in South Germany. Samples 
from a 1 m interval grid revealed three areas of elevated P. One 

Figure 1. Distribution of Pav (available P) at the Early Copper Age Tiszapolgár settlement of Mezőberény-68 on an elevated loess ridge on the south side 
of a palaeochannel in the Körös Region of eastern Hungary.

0                                               80 m
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of these areas was associated with a hearth and interpreted 
as indicating food preparation. The other two areas could 
not be interpreted with certainty, although knowledge of 
typical organization of medieval houses into domestic areas 
and stables led to a plausible conclusion that a large area 
of P enrichment on one end of the structure marked the 
stable (Schreg and Behrendt, 2011). In another example, 
soil P was successful in delimiting vertical stratigraphy and 
layers with anthropogenic inputs, even when those layers 
could not be distinguished visually (Ernée, 2005). Ongoing 
developments in soil P analysis in Central Europe indicate 
that the method not only remains useful, but has the potential 
to overcome some restrictions – for example, through the use 
of oxalate‐extractable P (P‐ox) as an alternative to phosphate 
fractionation (Weihrauch et al., 2020).

In the Czech Republic phosphate analysis has a long 
history of use for analysing cemeteries and possible burials. 
Early research focused on using soil P to aid in identifying 
graves with poor or no bone preservation (Pelikán, 1954), 
including the identification of elevated P in cremation burials 
(Págo 1963, cited in Petřík et al., 2012). More recently, 
phosphate analysis was combined with the Brongers method 
of identifying wood remains at a Bell Beaker site in Moravia 
(Hlavica et al., 2011). At the Bronze Age Únětice site of 
Prague 9 – Miškovice site, phosphate anomalies in the form 
of burials aided in identifying grave-pits as a third burial form 
(along with inhumations and cenotaphs); cenotaphs lacked 
any P enrichment (Ernée and Majer, 2009). Similar results 
were obtained from Bell Beaker burials at several sites in the 
Znojmo district in Moravia (Petřík et al., 2012). In that study, 
researchers also identified potential complications arising 
from various formation processes, including the influence of 
burial in or on wood, which apparently produced a lower 
signature than bodies placed directly on soil, and elevated 
P values associated with a secondary intrusion of organic 
sediments.

Phosphate testing is most effective when used as one 
component of an integrated multi-proxy approach to regional 
prospection and site investigations. In Hungary, soil P is used 
along with magnetic survey, magnetic susceptibility, and 
surface collection to identify vertical and horizontal limits 
of Neolithic and Copper Age settlements, and the extent of 
settlement and activity areas within micro-regions (Gyucha 
et al., 2015; Parkinson et al., 2010; Salisbury et al., 2013; 
Sarris et al., 2004). Phosphorus was used as one proxy 
in a multi-proxy reconstruction of functional spaces at 
a Late Bronze Age farmstead in Poland (Markiewicz and 
Rembisz-Lubiejewska, 2016).

3.  Multi-element soil chemistry

Lutz (1951) recognized in the 1950s that elements other 
than P could be useful in archaeological contexts. Multi-
element geochemistry provides more detailed information 
about what people did and where they did things, because 
human activities alter all the chemical and physical 

properties of soils. Within archaeology, multi-element 
analyses have increasingly been applied for identifying 
different activity areas in connection with settlements, 
craft production, and marketplaces (Coronel et al., 2015; 
Holliday et al., 2010; Salisbury, 2017). The elements most 
often found to be associated with human settlements are P, 
K, Ca, Mn, Cu, Zn, Sr, Ba and Pb, but elements such as Mg, 
Rb, Cs and Th have also proven useful in some instances 
(Entwistle et al., 2000; Oonk et al., 2009a; Wilson et al., 
2008; 2009). Archaeological applications of multi-element 
soil chemistry have typically used ICP-MS; portable X-ray 
fluorescence is now being adopted and adapted (Coronel 
et al., 2014; Gauss et al., 2013; Šmejda et al., 2017).

Much of what we know about the relationship between 
these elements and human activities comes from 
ethnographic studies, where human behaviour is observed 
and analyses conducted to see how this behaviour affects 
the soil chemistry. Ethnoarchaeological studies working 
with indigenous people in their households in small, rural 
villages have been done in Central America, including 
Oaxaca (Middleton and Price, 1996), several other areas 
in Mexico (Barba and Ortiz, 1992; Barba et al., 1996), 
Guatemala (Fernández et al., 2002; Terry et al., 2004), and 
Honduras (Wells and Urban, 2002). These studies found 
connections between specific domestic activities, such 
as cooking, storage and crafting, and specific chemical 
elements, compounds, and soil properties. There are also 
a few examples from arctic and subarctic regions (Butler 
et al., 2018; Knudson and Frink, 2010), but few from 
temperate Europe. This means that these studies occur on 
soil types that do not include loess, and focus on a specific 
set of input materials, some of which, like maize, did not 
exist in prehistoric and early historic Europe. Carbon (C) 
and Nitrogen (N) are also important elements to consider, 
especially in terms of depletion due to agriculture, or 
enrichment through fertilization, but these elements are 
too light to be analysed using either ICP-MS or XRF, so 
their investigation requires other instrumentation to be 
employed. A key point here is the gap in our knowledge 
base, which can only be closed by experimental and 
ethnoarchaeological research in Central Europe.

Multi-element work is almost exclusively restricted to 
excavation contexts, where we already have a potential 
archaeological interpretation and want confirmation, 
or when we try to interpret “empty” places (Terry et al., 
2015). Analysis of a paleosol from beneath a Bell Beaker 
(c. 2500–2200 BC) burial mound in Moravia indicated 
that the burial location had not been used for habitation 
or production activities (Hejcman et al., 2013b). In part, 
identification of the paleosol was based on levels of lead and 
cadmium lower than surrounding soils. In rare occasions, 
multi-element chemistry has been used to interpret 
unexcavated areas. For example, Principal Components of 
multi-element data from Late Neolithic and Early Copper 
Age farmsteads in eastern Hungary were interpreted to 
delineate potential activity zones, and compared to identify 
similarities in the use of space (Salisbury, 2013; 2016).
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Multi-element soil chemistry has also been used to 
determine archaeological context as a primary factor for the 
appearance of cropmarks. In a series of papers, Hejcman and 
colleagues demonstrated that the chemical composition of 
ancient pit fills, subsoils, surface soils and vegetation was 
directly enhanced by the presence of ancient human activities 
(Gojda and Hejcman, 2012; Hejcman et al., 2011; Hejcman 
and Smrž, 2010; Hejcman et al., 2013a). In particular, the 
analysis of ashed vegetation from assumed archaeological 
features (positive cropmarks) and “background” vegetation 
enabled a straightforward correlation between anthropogenic 
chemical enrichment and the effectiveness of aerial 
archaeology (Gojda and Hejcman, 2012).

3.1  Extraction processes
By comparing the relative concentrations and combinations 
of elements, as well as other soil components (e.g. pH, soil 
organic content, and magnetic susceptibility), activity patterns 
can be identified and examined (Pető et al., 2015; Pető 
et al., 2019; Salisbury, 2013). We use relative concentrations 
because many variables affect elemental levels in soils, and we 
are specifically looking for anthropogenic inputs (Wells et al., 
2000; Wells et al., 2007). This focus on anthropogenic inputs 
has also resulted in broad disparities in analytical methods.

These disparities lead to a second knowledge gap, one 
that has been noted several times (Oonk et al., 2009b; 
Pastor et al., 2016; Wilson et al., 2006). Despite advances 
in sample preparation and analytical methods, we still 
lack standardized protocols, or a fundamental agreement 
on how sediment characteristics and laboratory condition 
influence our extraction methods and subsequent results. 
In addition, meta-studies investigating the efficacy of 
methods and comparability of results are largely lacking 
(but see Lubos et al., 2016). The type of extraction used 
will highly influence the results. Americanist archaeologists 
frequently rely on a weak-acid extraction that is intended to 
extract only the anthropogenic signature (Middleton, 2004; 
Salisbury, 2016; Wells, 2004). In the experience of this 
author, geologists are horrified by this approach, arguing 
that total extraction using strong acids at high temperature is 
the only acceptable method. Both can be made to sound like 
reasonable arguments, but each might be inappropriate for 
archaeology. Geoarchaeologists have developed alternatives 
that give quasi-total extraction. One example using HNO3 
is set out in Wilson (2008). Mehlich 3 extractant is widely 
used in the Czech Republic, and has been recommended as 
an international standard for archaeological soil chemistry 
(Hejcman et al., 2013b).

Attempts at standardization are unlikely to be a perfect 
solution, because the extractions should be based partly on 
methodological consistency and comparability, but also on 
regional soils, environmental conditions, and the nature of 
the elements themselves (Pastor et al., 2016; Wilson et al., 
2006). Therefore, reliability and comparability will be better 
served by consistent standardization in sample handling and 
preparation, documentation of methods and protocols, and 
presentation of results.

3.2  Portable XRF – a new state-of-the-art
Portable, handheld, energy dispersive X-ray Fluorescence 
spectroscopy (pXRF) is comparatively inexpensive, non‐
destructive, and enables rapid acquisition of large datasets, 
and therefore is rapidly being adopted for a range of 
archaeological applications (Holcomb and Karkanas, 2019; 
Michałowski et al., 2020; Riebe, 2019; Vianello and Tykot, 
2017). Technological innovations are solving many of the 
problems confronted by early adopters, such as the inability 
to measure P and other light elements, and the interference 
of silicon with P (Coronel et al., 2014). Handheld XRFs are 
now being widely used for soil analyses, in Central Europe 
and elsewhere (Dreslerová et al., 2020; Horák et al., 2018; 
Lubos et al., 2016; Šmejda et al., 2017). In addition, pXRF 
returns total elemental composition, making it comparable to 
total and quasi-total chemical extractions.

At the fortified Early Bronze Age settlement of Fidvár in 
southwest Slovakia, pXRF analysis of samples from an Early 
Bronze Age house, the site centre, a potential metal workshop, 
and the fortification ditch indicated P enrichment in the ditch 
and low levels in the house. Calcium and strontium varied 
within house samples, and were again higher in the ditch. 
No geochemical evidence for metalworking activities were 
found (Gauss et al., 2013). Using a similar methodology, 
74 samples were analysed from a Neolithic Linear Pottery 
Culture house and associated ditch near Vráble in Slovakia. 
Results indicated the need to consider post-depositional 
processes, in this case in bio-cycling in particular, for 
accurate interpretations (Dreibrodt et al., 2017).

Medieval settlements have also received attention. At 
the abandoned medieval village of Lovětín near Třešť in 
western Moravia, general household waste was likely spread 
on agricultural plots, based on elevated levels of Mn, Sr, 
and K. Corresponding low levels of P were interpreted as 
P depletion due to ineffective fertilization; widespread use 
of manuring was not evident. Nevertheless, the authors 
cautioned that the detection limits of their instrument 
constrained measurements of P and Ca (Horák et al., 2018).

Portable XRF has also been applied to cemetery research. 
In a Late Bronze Age and Early Iron Age example, pXRF 
was used to determine that urn cenotaphs – burial urns with 
no macroscopic bone remains inside – never contained bones 
(Pankowská et al., 2018). Fill of urns without bones had 
lower levels of P, Ca, Mn, Zn, Pb and V when compared to 
samples from urns containing visible bone fragments.

Effective application of portable X-ray fluorescence 
analysis in the field, to establish multi-element chemical 
analyses as a standard approach in archaeological fieldwork, 
requires a workflow optimized for field conditions. The 
optimal ex situ methodology, wherein sediment samples 
are oven dried, milled to c. 20 microns, homogenized, and 
pressed into pellets or disks, clearly remove many factors 
that influence measurements, such as sunlight, soil moisture 
content, and measuring a single large particle in un-sieved, 
un-homogenized sediments. However, transportation, 
storage, and laboratory processing remove the advantages 
of a portable, affordable instrument that provides results in 
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one day. Conversely, in situ methods that take full advantage 
of portability and speed by directly measuring sediments 
at the surface (Šmejda et al., 2017; Šmejda et al., 2018) 
do not always produce reliable and replicable data on the 
elemental composition of a sampled context (Goff et al., 
2020). Nevertheless, in field analyses will be conducted, 
because of the obvious advantages. Therefore, establishing 
a protocol for in field testing, particularly for consistent 
sample preparation, is essential (Frahm et al., 2016; Goff 
et al., 2020). The best alternative for in field analysis is 
sampling, air-drying, sieving through 2 mm mesh, crushing 
and homogenizing by hand using ceramic mortars and 
pestles, and packing into plastic sample cups covered with 
thin polypropylene or mylar film (cf. Dreibrodt et al., 2017; 
Goff et al., 2020).

Unlike the situation of various extraction methods for ICP-
OES/MS, serious attention has been given to the question of 
how pXRF results compare to ICP-based analyses (Frahm 
et al., 2016; Gauss et al., 2013; Lubos et al., 2016). For 
the most part, results are comparable when total or quasi-
total extraction methods are used. The primary purpose 
of archaeological soil chemistry is to establish patterns of 
activities rather than absolute elemental values. Therefore, 
the most important comparison is of the spatial patterning of 
element enrichment and depletion, which is less frequently 
reported. The study by Lubos and colleagues (2016) is an 
important exception to many critiques; comparison of several 
strong acid and weak acid extractions with pXRF indicates 
high correlation of results using weak HCL, strong HNO3, 
Aqua Regia (all ICP-OES), and pXRF.

Moreover, the accuracy and reproducibility of measurements 
depend on instrument calibration, availability of appropriate 
material standards, and regular measurement of blanks (e.g. 
SiO2 blanks). Three sets of calibrations for soil analysis are 
available from major pXRF models. Although each company 
uses different names for these, they can be grouped as 
an empirical mode (requiring known samples), fundamental 
parameters (FP), and Compton normalization. The latter two 
come preinstalled; recent models often include a combined 
fundamental-Compton mode. International soil and sediment 
geological standards (GBW 7411, NIST 2780, NCS 73308, 
TILL-4, and USGS SdAR-M2) might be problematic, 
particularly in areas of redeposited loess, such as the Great 
Hungarian Plain. For example, TILL-4 is a sample of till 
taken in New Brunswick, Canada; NIST 2780 is hard rock 
mine waste. Correction of reported pXRF data with local 
calibration samples can resolve these issues (Goff et al., 
2020), but local calibration samples must be developed for 
each region and geology.

4.  Future directions

Following the third-science revolution (Kintigh et al., 
2014; Kristiansen, 2014), issues of mobility and migration, 
increasing complexity in social and settlement organization, 
human-environmental interactions, economic sustainability, 

and cultural and environmental resilience are becoming 
increasingly relevant for archaeology. In spite of the 
unremarkable fact that most human activities generate 
measurable traces in sediments, plasters and other surfaces, 
these papers do not specifically mention the role of 
geoarchaeology. In addition to the continued development 
of multi-element sediment geochemistry, biogeochemistry 
is providing new insights into questions about mobility, 
domestication, land use, anthropogenic impacts, and socio-
political interactions. This section will briefly examine some 
recent developments in these arenas, with contributions from 
geoarchaeology and soil science.

Biogeochemistry is a highly inter-disciplinary concentration 
on cycles of chemical elements and their isotopic ratios, and 
natural or anthropogenic organic compounds such as proteins, 
lipids, carbohydrates, and nucleic acids. Organic molecules 
from biological sources can be preserved in soils and 
sediments, and serve as markers of anthropogenic activity, 
although the preservation of these biomarkers is highly 
dependent on the pedological conditions (Bull et al., 2000; 
Bull et al., 2002; Killops and Killops, 2005). Soil biomarkers 
have been used, albeit sporadically, to aid reconstructions of 
palaeoenvironmental conditions, cultivation and manuring, 
and other human activities at multiple analytical scales 
(Bethell et al., 1994; Hjulström and Isaksson, 2009; Prost 
et al., 2017; Simpson et al., 1999).

Faecal biomarkers, in particular 5β-stanol lipids, provide 
data on pastoral practices and land-use in France (Zocatelli 
et al., 2017), animal husbandry and uses for dung in Anatolia 
(Portillo et al., 2020), and plants as a significant component 
of Neanderthal diet in Spain (Sistiaga et al., 2014). Faecal 
biomarkers can now be used to distinguish between different 
animal species (Harrault et al., 2019; Prost et al., 2017), 
significantly increasing their usefulness for research on early 
domestication and animal husbandry.

Lipid biomarkers from plants, in the form of plant sterols 
and n-alkanes from leaf waxes, are chemically inert, persist in 
sediments for thousands of years or more, and provide direct 
evidence of vegetation types (Patalano et al., 2020). Sterols 
produce chemical signatures specific to different plant types, 
and are used to infer palaeovegetation changes, such as shifts 
from grasses to trees and shrubs, or lacustrine to terrestrial 
species (Schatz et al., 2011; Schwark et al., 2002; Zech et al., 
2010). Analyses of carbon and hydrogen isotopes in these 
compounds are also used to infer palaeoclimate variability 
(Patalano et al., 2020; Schirrmacher et al., 2019).

4.1  Isotope biogeochemistry
One widely recognized biogeochemical application in 
archaeology is the analysis of isotopic ratios of strontium, 
carbon, oxygen, nitrogen, sulphur and other elements 
in bones and teeth from humans and animals, and the 
relationship between these and depositional environments. 
These methods are now routinely used for reconstructing 
diet, climate, mobility, and environmental changes indicative 
of anthropogenic modifications to subsistence and habitation 
strategies (Balasse et al., 2017; Chazin et al., 2019; Demény 
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et al., 2019; Giblin and Yerkes, 2016; Makarewicz and Sealy, 
2015). For example, stable strontium, oxygen, and carbon 
isotopes provided evidence for different subgroups of the 
massacred Neolithic community at Talheim (Bentley et al., 
2008). Strontium ratios from Late Neolithic and Copper 
Age human dental enamel indicate greater variability during 
the Copper Age on the Great Hungarian Plain, suggesting 
a wider geographical range of food acquisition (Giblin et al., 
2013).

Biochemistry of ancient bone, as in the examples 
above, typically includes a geological component from the 
depositional environment. An isotopic study from Czech La 
Tène cemeteries illustrates the problem of differentiating 
land-use practices and local geological variability from 
human mobility when interpreting strontium variability 
(Scheeres et al., 2014). This highlights the need to map 
regional baseline isoscapes, or isotopic landscapes, from 
proxies appropriate for ancient conditions (Bataille et al., 
2020; Snoeck et al., 2020).

Sediment biogeochemistry has unrealized potential 
for reconstructing past human activities and ecosystems 
(D’Anjou et al., 2012; Vranová et al., 2015; Vranová et al., 
2012). A study of δ15N ratios of samples taken from two 
long-standing agricultural experiments on the impact of 
manuring on agricultural yields demonstrates that manuring 
significantly raises nitrogen values in both grains and chaff 
(Bogaard et al., 2007). Sodium, chlorine, nitrate, and nitrate-
nitrogen isotope values from waste layers at Aşıklı Höyük, 
a Neolithic tell in central Turkey, were used to calculate 
increasing numbers of caprines (Abell et al., 2019).

4.2  Sedimentary ancient DNA
Ancient human and environmental DNA preserved in 
palaeosoils can provide evidence for human presence, 
species identification, and changes in ecological diversity. 
Sedimentary aDNA (or sedaDNA) can contribute to multi-
proxy interpretations, but are especially useful when physical 
remains are not preserved (Brunson and Reich, 2019; Epp 
et al., 2019; Thomsen and Willerslev, 2015). For example, 
a study of lake sediments from Poland contrasted human-
specific bacterial DNA, a marker of human faecal material, 
and pollen counts; results revealed direct correlation of 
human presence and vegetation changes (Madeja, 2015). 
Although most recent research has been conducted on lake 
sediment samples from cores (Giguet-Covex et al., 2014; 
Madeja, 2015; Parducci et al., 2017), sediment samples 
can be taken directly from secure archaeological contexts 
(Hebsgaard et al., 2009; Nejman et al., 2020; Slon et al., 
2017).

4.3  Proteomics from sediments
A relatively new area of research in archaeology is proteomics. 
Proteomics involves the extraction, sequencing, and analysis 
of proteins that form proteomes, and the identification of 
species based on the weight of specific proteins; ancient 
proteomics, or palaeoproteomics, involves the extraction 
and analysis of proteins from archaeological remains. The 

application of proteomic methods in archaeology is most 
developed in the analysis of human and animal bones 
(Brown et al., 2016; Lanigan et al., 2020), dental calculus 
(Charlton et al., 2019), and ceramics (Shevchenko et al., 
2018). Archaeological and environmental proteomes can also 
be extracted from soil; preliminary results were promising, 
but this method is in the early stages of development (Oonk 
et al., 2012).

5.   Summary: Bringing it all together with multi-proxy 
approaches

As we move towards the middle of the 21st century, archaeology 
departments need to become more interdisciplinary and more 
attuned to the information stored in the sediment archive: 
ancient human DNA, other ancient DNA, ancient fats, 
carbohydrates, and stomach acids, the microbial environment, 
and changing soil conditions. Bio-geoarchaeology can 
address new questions, or bring new methods to acquire 
data that was previously unavailable. Accessing these data 
requires an acceptance that anthropogenic sediments are 
archaeological remains.

A couple of points concerning the future development 
of archaeological soil chemistry must be considered. One 
is that the latest analytical methods cross disciplinary 
boundaries and push the current limits of archaeological 
soil chemistry. Geoarchaeologists will need to integrate 
knowledge of these methods into their toolkit, without losing 
their existing expertise. Furthermore, existing methods 
and protocols may require modification for archaeological 
contexts, to accommodate the effects of formation processes 
and the vagaries of human activities. Potential rewards make 
these efforts worthwhile. Converging lines of evidence from 
multi-element soil chemistry, magnetic susceptibility, and 
soil biomarkers will provide greater interpretive power for 
settlement and activity areas research, whilst also producing 
complementary evidence for zooarchaeology and other 
environmental analyses (e.g. Dreslerová et al., 2020; Lauer 
et al., 2014).

This leads to a second point, which is that our older 
methods of sampling for inorganic soil chemistry are 
inadequate for current analytical capabilities. One immediate 
methodological aim in archaeological soil chemistry should 
be to establish new and standardized sampling and storage 
methods for biomarkers, in particular those collected directly 
from archaeological contexts.

The need for site prospection employing primarily 
soil phosphate analysis is likely to remain, particularly 
in woodlands or other conditions that limit geophysics 
and surface collection. Unfortunately, this approach is 
rarely used today, despite its obvious application to filling 
gaps in our survey areas. Portable XRF provides a tool 
for in field geochemical analysis of geological samples, 
including soils, that can be done as a prospection method 
or as biogeochemistry samples are collected. Further, pXRF 
fits within the budget of most research programmes. In 
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these respects, pXRF is both the new state-of-the-art and 
a method for the future. However, comparisons between 
institutes or field projects should be undertaken to assess 
results using standard calibrations, and determine whether 
correction factors can be developed for general use or need 
to be established for each individual device. This represents 
a second essential aim for geoarchaeology. In addition, 
we need an effective universal protocol for collecting and 
processing sediment samples in the field, so as not to lose the 
advantages of speed and portability.

Geoarchaeologists need to be able to collect appropriate 
samples, and aid in data interpretation, allowing laboratory 
scientists to develop analytical protocols for sediment 
bimolecular studies. The combination of biomarkers with 
geoarchaeological methods such as soil phosphates, magnetic 
susceptibility, micro-remains, and thin-section analysis will 
open new frontiers in our understanding of the human past.
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