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1.  Introduction

The goal of archaeological predictive modelling is to 
assess spatial relations between archaeological sites and 
contribute to a better understanding of land use and the 
patterns of human behaviour in the past. On a pragmatic 
level, an archaeological predictive model (APM) can be 
used as an auxiliary tool in cultural heritage management, 
public administration and landscape planning as it provides 
the opportunity to identify areas with high archaeological 
potential and areas endangered by construction, exploitation 
of mineral resources, illegal looting, etc.

APM creation requires data and parameters which are 
often uncertain due to the data source (e.g. the positioning 
accuracy of archaeological data) or their nature (what exactly 
is a “suitable” slope? How far is “near”?).

The aim of this paper is to provide an overview of selected 
mathematical methods and their implementation in practice. 
We primarily focus on the principles specific for use in 
geographic information systems.

2.  Predictive models

There are several options for distinguishing predictive models 
and approaches to their creation based on various aspects, 
see (Goláň 2003; Danielisová 2008; Lieskovský 2011). The 
most frequent is the division into inductive and deductive 
models; both have different theoretical bases, advantages, 
disadvantages, and limitations in terms of their creation 
and subsequent application. This distinction is not absolute, 
however, and both the inductive and deductive approach 
can be used in the creation of one model (e.g. the inductive-
deductive model).

2.1  Inductive models
Inductive (empirical) models use the mutual relations of 
already known archaeological sites and specific landscape 
attributes. The prediction of new sites consequently consists 
of employing the identification of landscape parts which 
have the same or similar parameters (Danielisová 2008).

This approach is one of the most common forms of 
prediction modelling, but has significant theoretical and 
practical limits. During the analysis of existing sites, we 
have to assume that the sample of sites is representative 
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Archaeological predictive modelling unites spatial analysis and the methods of geographic information 
systems (GIS) up with spatial (landscape) archaeology. Archaeological predictive models (APM) are 
used in several academic and practical applications to model and verify archaeological hypotheses 
about the relationship between humans and the landscape. Selected mathematical aspects of APM 
creation and analytical overlay operations are described in this paper as well as an APM application in 
an archaeological spatial analysis. One of the key problems in APM creation is the uncertainty of input 
data and their modelled parameters. We approach this issue using fuzzy logic. After reviewing the basic 
concept of fuzzy sets, the aggregation functions and their influence on APM creation are described. 
Validation of APM, although necessary for practical application, is often overlooked. Basic mathema-
tical principles for selected methods of APM validation are provided here and suggested validation 
methods were applied in order to evaluate fuzzy deductive and inductive-deductive predictive models 
from southern parts of Central Slovakia.
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and that these sites are distributed purposely, depending 
on environmental or social factors (Goláň  2003). These 
conditions are rarely met.

The problem is related to the number of sites inside the 
studied area (a statistically significant sample) and also to 
the uniformity of exploration of the area. Due to various 
reasons, for instance, one part of the territory may have been 
explored in more detail, while another area might remain 
omitted. Another theoretical disadvantage is that the areas 
predicted by the inductive method are essentially the same 
as the areas from which the model was built. If we make use 
of the current state of knowledge of the archaeological sites 
in the known area to predict other areas, atypical sites with 
different characteristics cannot be predicted by the model. 
Despite this fact, inductive models are particularly useful in 
landscape planning or as a supporting tool in the protection 
of the cultural heritage.

2.2  Deductive models
Deductive models are based on a preliminary evaluation 
of the landscape suitability for a settlement. This includes 
the conditions that the landscape should meet for a 
residential, burial or another area to emerge. We assume that 
archaeological sites occur as a consequence of interactions 

between the cultural system of communities and the 
landscape, where people have established the areas of their 
activities (Neustupný  2007). The deductive approach is 
based on an evaluation of landscape characteristics (instead 
of the characteristics of well-known locations in the inductive 
approach). The already known sites serve to test and monitor 
the model in this procedure.

The contribution of the deductive models is primarily 
evident in the academic field, because of its ability to include 
the comprehensive knowledge of possible human behaviour 
in the past. They enable the implementation and modelling of 
social factors and are applicable in the areas without relevant 
archaeological data. Using an appropriate theory, areas that 
are difficult to detect by ordinary methods of field work can 
be modelled.

Inductive and deductive approaches are not mutually 
exclusive. The development of the deductive models also 
utilizes the empirical research experience. Deductive models 
are based on the known patterns of the phenomenon or on the 
experiences, and the quantification and classification of the 
phenomena from practice is used (a variant of the inductive 
approach). According to (Leusen et al. 2005), the terms 
“inductive” and “deductive” were only used to determine 
the weights of the layers. The term was later transferred into 

Figure 1.  Example of an archaeological predictive model.
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practice and was used to indicate the approach to the model 
creation. Both methods provide complementary results and 
their appropriate mutual combination can lead to a good 
prediction model.

Both approaches have in common the use of theoretical 
principles of mathematical and spatial modelling and the 
methods included in the geographic information systems 
(GIS). These procedures involve a wide variety of methods 
ranging from a simple statistical test of differences between 
two files (the occurrence of the phenomenon in the landscape 
and in archaeological sites), the determination of the 
significance rate of such a difference, the determination 
of the correlation rate through the creation of predictive 
models combining properly made layers by the usage of 
corresponding aggregation functions to the very validation 
of the predictive models. A number of these practices are 
common for creating archaeological predictive models for 
both bases. This is why the aggregate functions cannot be 
ignored when developing deductive models and in contrast, 
the principles of the fuzzy sets also cannot be ignored in the 
case of the inductive models.

3.  Principles of archaeological predictive models creation

The creation of an archaeological predictive model (Figure 1) 
consists of the following phases (Danielisová  2008; 
Lieskovský 2011):

1.	 Defining the problem. This includes the determination 
of the purpose (pragmatic/academic), the choice of 
methods and approaches (deductive/inductive).

2.	 Source data selection and database structure 
design. The available data sources determine the 
creation and application of the predictive models. 
(Lieskovský 2011).

3.	 Making the analysis. This follows the questions set 
out in the problem definition. In inductive analysis, we 
analyse the representation of the phenomenon in the 
country and the archaeological sites. In the deductive 
approach we create corresponding layers based on an 
expert knowledge, an analogy in other areas, etc.

4.	 Testing of the analytical results. Prior to the interpretation 
of the obtained results, we have to verify their reliability 
and relevance. Methods of mathematical statistics are 
widely used and the statistical credibility of the results 
can be expressed differently.

5.	 Interpretation of the results. This concerns in particular 
a meaningful evaluation of the analysis results and 
their correct inclusion in the context in terms of the 
examined problems.

6.	 The creation of an archaeological predictive model 
(APM). By applying the acquired results, we derive 
secondary layers which meet the criteria of relevance. 
They can subsequently be integrated into the APM in 
an optimal number of alternatives.

7.	 Validation of the predictive models. The created model 
or its variants should be tested for the accuracy and 

reasonableness of the prediction, while we are trying 
to optimize models and define their usefulness in 
accordance with the obtained results.

8.	 Implementation of APM and its refinement. This phase 
depends on the purpose of the model creation and is 
an iterative process. A suitably constructed model can 
be refined by including new data and findings. If it no 
longer meets the criteria, we create a new model.

Phases 1 to 3 and partially phases 4 and 5 are covered 
in detail in (Lieskovský et al.  2011). We focus in this 
paper on selected mathematical aspects of APM creation. 
From a mathematical point of view, these processes can be 
summarized in the following stages:

1.	 Detection of the elementary statistical properties of the 
analysed phenomenon.

2.	 Detection of the conformity or difference significance 
between the two samples (the archaeological site and 
the country).

3.	 Determination of the significance degree of the 
difference (weights).

4.	 Determination of the statistical dependence between 
two variables (correlation rate).

5.	 Creation of the input layers for a model design based 
on the statistical results.

6.	 Creation of the input layers for a model design based 
on the theory of fuzzy sets.

7.	 Creation of a model by combining the input layers 
using the aggregate functions and their properties.

8.	 Validation methods.
An overview of the basic statistical methods and testing 

(stages 1–4) can be found in the mathematical literature 
and are further described in several publications concerning 
archaeological predictive modelling (Leusen et al.  2005; 
Goláň  2003; Danielisová  2008; Lieskovský et al.  2011). 
These stages are typical for an inductive model creation. 
This paper focuses on the stages from 5 to 8 and the common 
mathematical principles of the deductive and inductive 
predictive models which are also important in terms of GIS.

4.  Input layers for a model design

When creating APM in the GIS environment we generally use 
overlay operations on raster layers, which are mostly derived 
from original data using an inductive or deductive approach. 
It is important to identify and determine the parameters of 
these layers in the form of individual categories inside the 
layer, establishing the layer´s weight and its overall effect.

Regarding the impact of the individual layers on APM, 
we propose dividing it into the following categories 
(Lieskovský 2011):

1.	 Layers of “exclusive influence”:
	 They represent layers of fundamental influence. The 

layer has its basic impact even on the assumption that 
all other conditions are fulfilled or unfulfilled. The 
presence of water near an archaeological site is an 
example, even if all other conditions are met (e.g. a 
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suitable slope, suitable soil, mineral resources) and the 
water is not available, it is not possible to assume the 
presence of a permanent settlement (Figure 2).

2.	 Layers of “general influence”:
	 These are layers of an expected general positive or 

negative impact on the result. For example, the aspect: 
when all the exclusive conditions in APM are met, the 
slopes facing the south and south-east direction may 
increase the attractiveness of a place while the north 
and north-west oriented slopes reduce it (Figure 3).

	 The suitability of the territory would be negated if the 
negative impact would exceed other positive effects.

3.	 “Attractor” layers:
	 Layers having a positive impact on the result. The 

presence of existing phenomenon increases the 
attractiveness of a place, although its absence does not 
necessarily reduce, for example, the presence of a road 
or minerals. (Figure 4).

4.	 “Deflector” layers:
	 The “Deflector” layer is the opposite of the “attractor” 

layer. Its presence reduces or excludes the attractiveness 
of the place, although its absence has a neutral effect. 
These may have been cult places (e.g. mounds) in the 
past and are currently for example localities destroyed 
by a construction process (e.g. covered by a thick layer 
of sediment).Figure 2.  Influence of the layer with an “exclusive influence”.

Figure 3.  Influence of the layer with a “general influence”.

Figure 4.  Influence of the layer “attractor”.
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4.1  �The creation of the input layers for a model design 
based on the statistical results

When developing APM, we considered the input layer as 
“exclusive”, particularly in variants based on the deductive 
approach. When applying the statistical inductive approach, 
we considered the alternative of “general” layer impact as 
well.

Following the results of the statistical tests or the expert 
assessment (deductive approach), we analysed these 
combinations of layers:

•• The cost distance to small and medium-sized 
watercourses, relief slopes, soil types (in a deductive 
approach, sustainability is based on an expert 
assessment, in an inductive approach, we think of 
maximal distribution of a land within 500 m).

•• The cost distance to small and medium-sized 
watercourses, relief slopes.

•• The cost distance to the border of fluvial sediments, 
relief slopes, soil types (in a deductive approach, 
sustainability is based on expert assessment, when 
using an inductive approach we consider the maximal 
distribution of a land within 500 m).

•• The cost distance to the border of fluvial sediments, 
relief slopes.

Using geoprocessing models, scripts in the R statistical 
software and macros in MS Excel, we have created 32 
variations APM (Table  1) focused on automating the 
calculation process. The versions of APM differ in the 
computational and combinatorial procedures which are 
described in the work (Lieskovský 2011).

4.2  �Making the input layers for a model design based on 
the theory of fuzzy sets

4.2.1 Uncertainty in archaeology
One of the main issues in the application of GIS in archaeology 
is the geometric positioning of an archaeological site. In 
the current state of archaeological evidence in Slovakia, 
accuracy of positioning can be within 100 m, particularly for 
older and unverified records. This value is based on the rules 
of the Central Registry of Archaeological Sites in Slovakia 

(CEANS), where the basic unit of the registration system in 
the database is a point with a diameter of 4 mm placed on the 
map with a scale of 1:25,000 which corresponds to 100 m in 
the field (Bujna et al. 1993). This point from the record of 
the archaeological sites is a significant source of uncertainty 
(Figure 5).

This means a generalization towards reality insofar as 
archaeological sites comprise a large area of polygons. The 
issue is determining the centroid of a known archaeological 
site (the core of the site versus the geometric centre) as well 
as its scope because it is rare that the site is exposed and the 
entire grounds of the site are known.

Archaeological finds themselves are subject to various 
transformation processes, deposition processes or spatial 
movements, such as erosion or soil movements. Similarly, 
in modelling certain phenomena and the application of 
theoretical knowledge, human behaviour, which is not 
always based on rational principles and is characterized 
by high variability and adaptability, needs to be taken into 
account. This is reflected in the vagueness of the opinions 
in the investigation of human history and human behaviour 
(“proximity to water”, “a suitable slope” and “suitable 
land”), which are the causes of confusion in the definition 
of certain standards in spatial analyses. All these facts bring 
a significant degree of uncertainty and distortion to spatial 
analyses. Fuzzy logic allows for improved reflecting of the 
natural estimated properties and modelling of the uncertainty 
of archaeological spatial data (Lieskovský et al. 2011).

4.2.2 The basic concept of fuzzy sets
The fuzzy set A of a universe X is defined by a membership 

function mA(x) such that X→〈0,1〉, where mA(x) is the 
membership value of x in A (Zadeh 1965).

The membership degree reflects the rate to which the 
element belongs to the set. Fuzzy sets are, therefore, a 
means providing the ability to mathematically describe 
vague concepts and work with them. The shape (e.g. the 
trapezoidal, Gaussian, sinusoidal) and the parameters of the 
membership functions can be determined on the basis of 
practical experience or the known properties of the analysed 
phenomenon. One of the most commonly used functions is 

Table 1.  List of APM models.

Layers
FSS WSS FS WS

Methods 
of APM 
creation 

D

L APM_FSS_D_L APM_WSS_D_L APM_FS_D_L APM_WS_D_L
M APM_FSS_D_M APM_WSS_D_M APM_FS_D_M APM_WS_D_M
P APM_FSS_D_P APM_WSS_D_P APM_FS_D_P APM_WS_D_P
W APM_FSS_D_W APM_WSS_D_W APM_FS_D_W APM_WS_D_W

ID

L APM_FSS_ID_L APM_WSS_ID_L APM_FS_ID_L APM_WS_ID_L
M APM_FSS_ID_M APM_WSS_ID_M APM_FS_ID_M APM_WS_ID_M
P APM_FSS_ID_P APM_WSS_ID_P APM_FS_ID_P APM_WS_ID_P
W APM_FSS_ID_W APM_WSS_ID_W APM_FS_ID_W APM_WS_ID_W

Methods of APM creation: D – deductive; ID – inductive-deductive.
Input layers: FSS – fluvial sediments, slope, soil; WSS – watercourses, slope, soil; WS – watercourses, slope; FS – fluvial sediments, slope.
Analytical overlay operators: L – Łukasiewicz t-norm; P – product t-norm; M – minimum t-norm; W – weighted average.
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the trapezoidal (piecewise linear) membership (Figure  6a) 
(Kainz 2012): A special case is represented by the triangular 
membership function (Figure 6b).

	

0 if ,

if ,
( ) 1 if ,

if ,
0 if  .

A

x a
x a a x b
b a

x b x c
d x c x d
d c

x d

m



<
− ≤ ≤
−

= < <
− ≤ ≤
−

>

	 (1)

A special case is represented by the triangular membership 
function (Figure 6b).

When creating APM, fuzzy sets were used to model 
entry criteria (raster data layers) (Lieskovský et al.  2011), 
(Ďuračiová et al. 2011).

5.  The aggregation of layers in the development of APM

Mutual evaluation when meeting individual criteria forms 
the basis for deciding on the propriety or impropriety of 
conditions. The process of combining several numerical 
values into a single representative is known as aggregation 
and the numerical function performing this process is referred 
to as the aggregation function. There are three basic classes 
of aggregation functions: conjunctive functions, disjunctive 

Figure 5.  Difference between the real and the recorded position of the site.

Figure 6.  a) The trapezoidal membership function mA(x), b) the triangular membership function mB(x).
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functions and internal functions. Conjunctive functions 
combine values as they are related by alogical “and” operator 
(in fuzzy logic represented by triangular norms). Disjunctive 
functions combine values as an “or” operator (in fuzzy logic 
represented by triangular conorms). Internality is a property 
shared by all the means and averaging functions (Grabisch 
et al. 2009).

In most cases, the resulting APM, created in the GIS 
environment, arises either through internal aggregation 
functions (for example, a weighted arithmetical average) 
or as a combination of intersections and unions of layers 
(conjunctive or disjunctive aggregate functions). The work 
(Lieskovský et al.  2011) describes the basic methods of 
aggregation of input layers by means of logical operators, 
such as intersection, union and complementing of the set 
(AND, OR, NOT). In mathematical logic, these operations 
correspond to the propositional operations of conjunction, 
disjunction and negation.

5.1  Fuzzy logic operators
Operations with fuzzy sets also form the basis for the 
operations of fuzzy propositional calculus but with the truth 
values coming from the interval 〈0, 1〉 (Navara, Olšák 2002). 
The operations of the fuzzy conjunction (the intersection of 
two or more features – criteria), fuzzy disjunction (union), 
and fuzzy complement (negation) are a generalization of 
crisp ones. The most widely used operations are known as 
standard fuzzy set operations (Zadeh 1965):

The intersection (Zadeh  1965) of two fuzzy sets A and 
B with respective membership functions mA(x) and mB(x) is 
fuzzy set C, written as C=A∩B, whose membership function 
is related to those of A and B by

	 ( ) ( ) ( )min , , ,c A Bx x x x Xm m m = ∈  	 (2)

The union (Zadeh 1965) of two fuzzy sets A and B with 

respective membership functions mA(x) and mB(x) is a fuzzy 
set C, written as C=A∪B, whose membership function is 
related to those of A and B by

	 ( ) ( ) ( )max , , ,c A Bx x x x Xm m m = ∈  	 (3)

The complement (Zadeh 1965) of fuzzy set A is denoted 
by A  and is defined by

	 ( )1 .AA xm m= − 	 (4)

The standard complement of fuzzy set A is consequently 
fuzzy set A  with a membership function Am .

The fuzzy intersection (conjunction) is generally defined 
by the so-called triangular norms (t-norms) and the fuzzy 
union (disjunction) using triangular co-norms (t-conorms) 
(Navara, Olšák 2002). The basic t-norms include (Kolesárová, 
Kováčová 2004):

( ) ( ), min , ,MT x y x y=  minimum t-norm (Figure 7a)	 (5)
                    (standard intersection),

( ), ,PT x y xy=  product (Figure 7b),	 (6)

( ) ( ), max 0, 1 ,lT x y x y= + −  Łukasiewicz t-norm	 (7)
	                            (Figure 7c),

( ) ( ) ( )min , , if max , 1,,
0, otherwise,D
x y x yT x y

 ==
	 (8)

	                                            drastic t-norm (Figure 7d).

Each t-norm is the aggregate function. The smallest t-norm 
is TD (x, y) and the greatest is TM (x, y) (Grabisch 2008). The 
following is valid for basic t-norms:

	 ( ) ( ) ( ) ( ), , , , .D l P MT x y T x y T x y T x y≤ ≤ ≤ 	 (9)

Figure 7.  The graphical interpretation of the basic t-norms a) minimum, b) product, c) Łukasiewicz, d) drastic (the values of the planar axis (x and y) 
represent the values of the degree of membership for two variables (criteria) and z-axis represents the resulting value of their aggregation, e.g. resulting value 
on the graph of the drastic t-norm is 0, if one of the values x or y is less than 1, otherwise the resulting value is the minimum of x and y (according to (8)).
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Corresponding t-conorms are defined as follows 
(Kolesárová, Kováčová 2004):

( ) ( ), max , ,MS x y x y=  maximum t-conorm	 (10)
	              (standard union),	

( ), ,PS x y x y xy= + −  probabilistic sum,	 (11)

( ) ( ), min 1, ,lS x y x y= +  Łukasiewicz t-conorm,	 (12)

( )
, if 0,

, , if 0,
1, otherwise,

D

x y
S x y y x

 == =

 drastic t-conorm.	 (13)

5.2  Means and averages
According to (Klir, Yuan 1995), the quasiarithemtic average 
hl (Generalized means) as the aggregation operator is in 
(Navara, Olšak 2002) defined as:

	

1

1
1

1( ,..., ) ,
n

n i
i

h
n

l
l

l α α α
=

  =    
∑ 	 (14)

where	 0,1α∈ , 2n≥ , l ∈ R, 0l≠ .
Special cases of quasiarithmetic average are:

•• for λ=1 arithmetic average,
•• for λ=2 quadratic average,
•• for λ=–1 harmonic average,
•• for λ=0 geometric average,
•• for λ→+∞ maximum,
•• for λ→–∞ minimum.

The weighted arithmetic average (the weighted linear 
combination) hw is defined as:

	 1
1

( ,... )
n

w n i i
i

h wα α α
=

=∑ ,	 (15)

where n∈N and 1( ,... ) 0,1 n
nw w w= ∈ is a vector of 

weights which fulfils the following condition:

1
1

n

n
i

w
=

=∑ .

The determination of the appropriate weights is often a 
question of an expert’s judgment or a complex statistical 
analysis. When creating APM, statistical methods such as 
basic descriptive statistics, testing statistical distribution, 
testing rates of disparity and testing cross-correlation of data 
were even applied to determine the weights of the individual 
criteria.

An ordered weighted aggregating operator (OWA 
operator) (Yager 1988) wh  is also determined by the vector 
of weights 1( ,... ) 0,1 n

nw w w= ∈ , which satisfy the 

condition 
1

1
n

n
i

w
=

=∑  (Navara, Olšák 2002):

	 1 ( )
1

( ,... ) ,
n

w n i p i
i

h wα α α
=

=∑ 	 (16)

where p is a permutation of indices, for which:
(1) (2) ( )...p p p nα α α≤ ≤ ≤ .

The minimum, the maximum and the arithmetic average are 
special cases of OWA operators.

5.3  �The choice of the aggregation operator and its 
impact on the resulting APM

The theory of fuzzy sets defines several fuzzy conjunctions 
and disjunctions. Their choice for a particular application 
as well as the choice of any other aggregation operator may 
significantly influence the outcome. When considering the 
purpose for which the fuzzy operators are used in spatial 
analysis, the application of this paper uses the minimum 
(standard), product and Łukasiewicz conjunction. From 
the internal aggregation operators’ group we applied the 
weighted arithmetic average providing, however, non-zero 
values for each entry decision criterion in order to maintain 
the exclusive influence of layers on the resulting APM. The 
selection of the aggregation operator to create APM should 
result from the nature of the input layers (the decision 
criteria). Conjunctive aggregate functions, such as a logic 
operator, intersection and all t-norms are considered to be 
appropriate operators for the layers of exclusive influence. 
The general effect of the layers is maintained by the integral 
aggregate functions (averages). The “attractor” layers are 
aggregated through disjunctive aggregation functions (the 
logical operator, the union and all other t-conorms). The 
“deflector” layers can be included into the model by means 
of the logical operator of negation.

Figure  8 documents the impact of the choice of the 
aggregation operators on the resulting APM. The subsequent 
validation of the APM supports either the propriety or 
impropriety of their use.

6.  Validation of APM

The validation of the model is characterized as a process of 
its evaluation or, in other words, represents a tool used to 
determine its quality. Despite the fact that the basic concept 
of testing (validation) is based on statistics, it is not applicable 
in most cases of APM statistical testing. Generally, predictive 
models are the result of the classification process. Moreover, 
the models work with incomplete data which follow the 
need to use the specific methods of their testing. Validation 
of the APM results in the determination of its performance 
as a degree with which the model correctly and precisely 
predicts the presence or absence of archaeological sites. 
Consequently, prior to the actual explanation of each APM 
validation method, it is important to clarify the meaning of 
terms such as accuracy and precision of a model, which are 
closely related to the concepts of gross errors and wasteful 
errors (errors of the first and the second kind/rate). In 
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predictive modelling, the accuracy of a model is understood 
as the meaning of a correct prediction signifying whether 
the model captures the majority of the sites. The model 
accuracy refers to the ability of a model to limit the areas 
of occurrence as closely as possible. Since the accuracy and 
precision combined determine the effectiveness of a model, 
the quality model should be correct and precise at the same 
time. Both concepts are well-illustrated in Figure 9.

Gross errors subsequently represent the occurrence of 
archaeological sites found in zones designated as those of 
low potential occurrence. The consideration of these errors 
is assumed in the application of the model for pragmatic 
purposes, namely to protect the cultural and historical heritage.

Wasteful errors are characterized (Altshul  1988) as the 
occurrence of “non-sites” situated in the areas designated as 
those of a high potential occurrence. From the archaeologists’ 

Figure 8.  The impact of the choice of the aggregation function (t-norm, weighted average) on the resulting predictive model (detail).

Figure 9.  The difference between accuracy and precision. The model on the left captures more sites than the right one – is more accurate, however, the right 
model limits the occurrence areas – it is more precise.
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point of view, wasteful errors constitute a less serious 
obstacle, although, the model containing a large number 
of these errors (the model is actually accurate, but is not 
precise) may lead to higher costs for constructors as long as 
it will be necessary to carry out archaeological excavation in 
a larger area than is actually needed.

The risk of committing a gross error is indirectly related to 
falling into a wasteful error. While the high level of accuracy 
of the prediction model minimizes gross errors, its high 
precision minimizes the wasteful ones.

6.1  Basic approaches to the validation of APM
The entire APM validation concept is based on the two 
following approaches:

1.	 Internal validation:
	 The efficiency of the archaeological prediction model 

is determined from a set of data from which the model 
was generated. In this case it does not concern new 
independent collected validation data as the testing 
process only presents a certain form of internal model 
validation (internal validation accuracy). This is why 
the outcome does not provide an adequate answer to 
the question of the actual efficiency of the prediction 
model.

2.	 External validation:
	 External validation uses validation methods similar to 

the first case; however, APM is validated on the basis 
of an independent data sample. Apart from this, the 

phase also includes a variety of methods for selecting 
a statistically significant independent data sample. The 
external form of the test is much more meaningful than 
the internal validation. The problem of its application 
is the lack of input data for the database of the 
archaeological discovery sites in the Slovak Republic.

6.2  �Validation methods for archaeological 
predictive models

The methods for determining the quality of the APM include 
the calculation of the individual characteristics and the 
validation parameters. It can be stated in general that the 
parameter is only suitable for APM validation if it has a value 
reflecting the quality of the APM and is easily interpretable 
at the same time (e.g. it takes the values from the interval 
〈0, 1〉 where values close to 1 represent an effective model, 
values close to 0.5 represent the model the prediction level 
of which is not all that different from random distribution 
(“a neutral model”) and the lower values correspond to a 
completely inefficient model).

Regarding incomplete archaeological data we utilise 
the following parameters of APM validation: the statistics 
gain G (Altschul  1988), the relative statistics gain GR 
(Altschul  1988), and the effectiveness e (Ďuračiová 
et al. 2011) and Gini coefficient Gk. The Brier parameter PB 
(Brier 1950) was modified in order to calculate the validation 
with incomplete data. The relations for their calculation, as 
well as the range of values the parameters can take, are shown 

Table 2.  Parameters of APM validation.

Validation parameter Range of values Model quality* Model neutrality** Mathematical relation

Statistics gain G (–∞, 1) →1 →0 1 a

s

pG
p

= −

Relative statistics gain GR 〈–1, 1〉 →1 →0 R s aG p p= −

Efficiency e (–∞, ∞) →∞ →0 s ns

a na

p pe
p p

= −

Gini coefficient Gk 〈0, 1〉 →1 →0 ( )( )1 1
1

1
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k i i i i
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=

= − − +∑

Brier’s parameter PB 〈0, 1〉 →0 →1 ( ),

2

,
1 1

1
i j

t n

B b i j
j i

P E
n
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= =

= −∑∑

Modified Brier’s parameter PB 〈0, 1〉 →1 →0 ( )2
1

11 1
n i

n

B b
i

P
n

m
=

= − −∑

pa 	 is the relative frequency of a “suitable area” which is classified by APM,
ps 	 is the relative frequency of archaeological sites identified by relevant APM in a “suitable area”,
pns 	 is the relative frequency of archaeological sites identified by relevant APM in a “low suitable area”,
pna 	 is the relative frequency of an area of interest, which is classified in APM categories as a “low suitable area”,
t 	 is the number of suitability categories,
j	 is the level of a suitability category,
n	 is the number of sites,

,i jbm 	 is the function belonging to a particular raster cell (site location) and category j as well,
Ei,j	 is the classification of the site occurring in category j or not (takes the value 0 or 1),
xi  , yi	 are the cumulative totals of the relative frequencies of the investigated phenomena,
* Model quality – ps→1∧pa→0∧pns→0∧pna→1,
** Model neutrality – the predicted distribution areas do not differ from the random distribution.
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in Table 2. Figure 10 illustrates the charts of the parameters 
G, GR and e. The charts also indicate the importance of the 
e application eliminating the disadvantages of parameters G 
and GR during validation of APM (Ďuračiová et al. 2011).

The validation methods of APM stated above (apart from 
the Gini coefficient and Brier’s parameter) are primarily 
designed for a binary APM (division of the territory into two 
categories – suitable or unsuitable) or limited by the number 
of categories of the area propriety (max. 2 – efficiency e). 
In order to make these methods applicable for validation of 
fuzzy APM, the individual relations need to be generalized 
(Karell et al. 2012) or the fuzzy model be transformed for 
validation purposes using defuzzyfication for the binary 
model or the model with three categories of suitability 
(“high suitable area”, mid-suitable area” and “low suitability 
area”). Defuzzyfication may lead, however, to a reduction in 
the potential of fuzzy models due to the loss of information 
about either the suitability or unsuitability of an area.

6.3  The results of APM validation and their evaluation
After creating the models, a complex validation of APM 
was carried out which was aimed at determining the most 
appropriate method for APM creation as well as to compare 
the individual methods’ results from the development 
and validation of APM. The preliminary results of the 
model validation were published in the works (Ďuračiová 
et al. 2011) and (Karell et al. 2012). The course of the external 
validation results of deductive and inductive-deductive APM 
for parameters e1–e3, G1–G3, Gk a Pb is shown in Figure 11.

Validation methods were applied to evaluate fuzzy 
deductive and inductive-deductive APM. As we only 
had access to data with positive results available from 
archaeological research, we applied the methods considering 
this factor. The results for every APM type indicate an 
evident cross-correlation between the individual parameters 
and their modifications. Based upon an analysis of the given 
results and the practical purpose we propose an application 
of parameter e2 (or G2) which counterbalances the precision 
and accuracy of the model. Parameter e3 contributes to 
the relevance of the model’s precision, which is primarily 
important in terms of the costs for the constructors carrying 
out the land survey. Parameter Pb evaluates models in terms 

of their accuracy (a minimization of gross errors) and we 
thereby consider the protection of the cultural and historical 
heritage. Since we did not consider the membership level, 
it is necessary to exclude the parameters e1 (or G1) from the 
models created by the fuzzy sets (they do not show signs 
of the difference between the models created by using 
individual t-norms and those created by means of a weighted 
arithmetic average). The application of parameter e1 (or 
G1) still has its meaning in, for instance, deductive-binary 
APM. The problem of the applied parameters (apart from 
parameters Gk and Pb) consists in a range of values as the 
results may take values ±∞ (G only at –∞). This may only 
be solved by a further modification of the given parameters.

The best results among the fuzzy-deductive and inductive-
deductive models were achieved in those APM created by 
the Łukasiewicz t-norm and the weighted arithmetic average. 
Significant differences occurred between the models made 
of layers of fluvial sediments, slope (and perhaps even 
soil suitability) and the models developed from layers of 
watercourses, slopes (and soils). This demonstrated that 
APM consisting of the layer of watercourses reached the 
significantly lower values of the validation parameters while 
the contribution of the soils’ layer to increase validation 
levels is minimal or none (the contribution of this layer is 
assumed at the availability of higher quality input data).

7. Conclusion

In case of statistical testing of the results of the spatial analysis, 
it is necessary to determine not only the difference in the 
distribution of the phenomenon in a country or sites, but also 
the difference/divergence rate. Given that the impact of the 
environment influenced the choice of the localities of human 
activities, the most basic tests (Kolmogorov – Smirnoff test, 
Chi – square, etc.) demonstrate the impact of these variables 
on the choice of an area with human activities. Since these 
tests do not quantify the size of this effect, it is appropriate 
to use methods quantifying the difference rate and thus 
potentially establish the importance of each phenomenon. It is 
additionally possible that the impact of several factors such as 
the presence of water, the appropriate slope, etc. may through 

Figure 10.  The process of validation parameters G, GR and e depending on parameters.
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Figure 11.  Results of the external validation parameters e1–e3, G1–G3, Gk a Pb for deductive and inductive-deductive APM.
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its significance obscure the importance of other factors 
involved in the decision-making process of selecting the area 
of human activities. We propose an exploration of the methods 
which examine the significance of other factors, considering 
that all dominant factors (trends) have been removed.

The implementation of map algebra operations by an 
appropriate aggregation function is based on a determination 
of the impact of layers in a proper way as it is stated in chapter 2 
(“Principles of the archaeological predictive models”). The 
results of the APM analyses’ variants indicated reduced APM 
accuracy in deductive creating by simplified principles. We 
recommend applying fuzzy logic instead of a binary one, if 
possible. The fuzzy sets enable a better expression of the 
natural assumed characteristics and model the uncertainty of 
the archaeological and spatial data. The deductive approach 
is appropriate when there is a sufficient knowledge of the 
phenomena based on the results of the archaeological 
research, archaeological theory or sufficient experience. 
The deductive approach is the only way of modelling in the 
areas missing information about archaeological localities. 
We may assume that the data are not statistically relevant 
(the low, uneven survey of the area of the study). The 
inductive approach allows us to partially objectify certain 
statements and assumptions used in the creation of APM as 
well as determine the importance of individual parameters. 
By means of the inductive approach we may analyse the 
changes in the input layers in the case of APM spreading to 
geographically distinct areas. In contrast, it does not enable 
a complete model of certain phenomena and is prone to a 
distortion caused by the uneven survey of the studied area, 
the accuracy of localization and the indiscrimination of the 
various types of archaeological localities. The best way is 
to combine both approaches. When creating a model by the 
deductive approach using the fuzzy sets, for example, the 
form of the membership function (chapter 3.2.1) may be 
adjusted to the basis of the results from the statistical testing 
of the known parameters and similarly it is then possible 
to determine the weight of each layer. When applying the 
mostly inductive approach, the distant and extreme values 
of the statistical testing can be eliminated on the basis of the 
deductive assumptions.

The advantage of the inductive-deductive model 
validation is represented by the similar behaviour of the 
external validation results for the first and the second sample 
of the archaeological sites. As expected, the results of the 
inductive-deductive APM are inferior to the fuzzy deductive 
APM. We would propose an interest with the optimization 
process of APM in the future. Possibilities for making 
them more accurate are based on choosing appropriate 
membership functions, excluding specific archaeological 
localities, which do not correspond to the common patterns 
of a settlement, but refer to the territory being attractive for 
another reason, e.g. in terms of mining, the cult factor, etc., 
dividing localities into residential areas and hill-forts, or 
using a better quality layer of soil types. The modification of 
APM should improve the results of the inductive-deductive 
APM validation.

Spatial archaeology and predictive modelling as its 
application are important elements of the archaeological 
research and clarify the relationship between humans and the 
landscape. Their development was enabled by the arrival of 
new theoretical approaches and paradigms. The combination 
of GIS and spatial archaeology allows for modelling and 
verifying the archaeological theories and assumptions and 
represents an effective method of cultural-historical heritage 
protection.

Archaeological predictive modelling is an interesting 
problem in terms of geoinformatics, mathematics and 
statistics. Although the degree of understanding is 
continually increasing, as well as the amount of applicable 
spatial data, the quality and quantity of archaeological data, 
the possibilities of historical environment reconstruction and 
ultimately the state of the art are still limiting factors in APM 
creation. These limits are typical for other natural sciences as 
well and there is a need to know the processing capabilities 
and develop new solutions and methods, which would be 
applicable in the sphere of archaeology and elsewhere.
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